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Abstract

Extreme temperatures are known to negatively affect health in the short term, yet

their persistent effects remain underexplored. This paper examines how extreme tem-

peratures encourage adaptive investments in health technologies over time. Using data

on temperature and latrine construction in rural India, I find that an additional cold

or hot day cumulatively increases latrine investment by 1-10%. Heterogeneity analyses

highlight the discomfort channel, where households construct latrines to avoid walking

outside for open defecation under extreme temperatures. The health benefits from this

increased latrine investment are comparable in magnitude to existing estimates of the

negative impacts of extreme temperatures.
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1 Introduction

Policymakers and researchers increasingly recognize the significant negative impact the chang-

ing climate can have on human welfare. Climate change increases the frequency of extreme

weather events, which in turn reduce human welfare both directly, by increasing morality

(e.g., Deschênes and Greenstone, 2011), and indirectly by reducing agricultural productivity

(e.g., Schlenker and Roberts, 2009) and labor productivity (e.g., Somanathan et al., 2021).

These short-run negative welfare consequences have been well known.

However, little is known about the persistent positive effects of weather shocks on human

welfare over time. I document that temperature shocks can induce adaptive investments

in indoor health technologies by discouraging outdoor health behaviors that entail greater

discomfort under extreme temperatures. When these outdoor behaviors pose risks to health,

weather-induced investments in indoor health technologies can ultimately improve health

over time through sustained usage. This focus on the persistent positive effect, driven by

adaptive health investments, offers a new perspective that differs from growing studies em-

phasizing persistent negative effects.1

This paper examines the persistent effect of extreme temperatures on health investment

by investigating the case of sanitation behaviors, that is, the construction of latrines, which

are used as durable goods over time. Extreme temperatures can affect a household’s decision

of whether to construct latrines or maintain open defecation practices in two opposing ways.

First, extreme temperatures can have a positive effect on latrine investment by increas-

ing the discomfort associated with open defecation (discomfort channel). Open defecation

requires people to walk outside to a place far from home, and extreme temperatures can

intensify the discomfort of this outdoor behavior. The heightened discomfort under extreme

temperatures may discourage people from open defecation, thereby motivating them to invest

in latrines as a means of adaptation.

Conversely, extreme temperatures, particularly extremely high temperatures, can have a

negative effect on latrine investment by reducing income (income channel). Extreme heat

has been shown to negatively affect income by reducing agricultural productivity (Burgess

et al., 2017; Colmer, 2021). This reduction in income can exacerbate financial constraints,

making it more difficult for households to afford latrine construction, thus discouraging this

form of health investment.

This paper empirically examines which of these two channels—the discomfort or the

income channel—dominates. If the positive effect through the discomfort channel dominates,

1A limited number of studies have examined the persistent effects of weather shocks, primarily highlight-
ing their negative impacts on economic growth (Dell et al., 2012; Foreman, 2020) and educational attainment
(Park, 2020).
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constructed latrines continue to be used as durable goods over time, leading to a persistent

effect on health investment.

I examine the temperature-induced latrine investment in the context of India’s nationwide

sanitation policy, the Swachh Bharat Mission (SBM), which started in 2014. Under this

policy, the Indian government subsidizes latrine construction in rural areas up to about 150

US dollars, which covers most of the initial cost of basic latrines. In this study context,

the discomfort channel is expected to be more influential than the income channel, which is

attenuated by the subsidy. My empirical analysis uses administrative data on the district-

level number of latrines under the SBM, alongside raster data on daily temperature and

rainfall from 2012 to 2019.

To examine the causal effect of temperature on latrine investment, I exploit presumably

random year-to-year variation in temperature at the district level after controlling for district

fixed effects, year fixed effects, and rainfall. I group the daily temperature measures into eight

bins to investigate the nonlinear relationship between temperature and latrine investment. I

also employ a distributed-lag model that includes lagged temperature for up to 10 years to

test the persistence of the effect. In this regression specification, I test whether cumulative

effects, defined as the sum of contemporaneous effects and lagged effects, are statistically

different from zero.

I find that both low and high temperatures increase latrine investment, and this posi-

tive effect persists over multiple years. Specifically, an additional cold day with an average

temperature below 5◦C (or 5-10◦C) leads to an increase in latrine investment by 26.8 (or

20.3) per 1,000 households, relative to a day in the 15-20◦C reference range (moderate tem-

peratures), over a three-year period. This cumulative effect amounts to a 10% (or 7.6%)

increase in latrine investment from the pre-SBM period. Conversely, I find smaller posi-

tive effects of higher temperatures, as the negative effect of the income channel can offset

the positive effect of the discomfort channel. For example, an additional hot day with an

average temperature of 25-30◦C or 20-25◦C results in an increase of 3.4 or 5.4 latrines per

1,000 households (a 1.3% or 2.0% increase), respectively. The effects become imprecise for

temperatures exceeding 30◦C, as these are more susceptible to the negative effect of the

income channel. Overall, the positive cumulative effects, observed across most temperature

bins, suggest that the discomfort channel dominates the income channel, with these effects

persisting over time.

A variety of robustness checks corroborate my findings on the positive and persistent

effects of extreme temperatures on latrine investment. Specifically, the results are robust to

multiple checks, including changes in the number of lagged years in the distributed lag model,

a placebo test examining the contemporaneous effect, addressing potential measurement
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errors in the outcome, and accounting for baseline latrine coverage that may affect subsequent

latrine construction.

Further heterogeneity and temperature deviation analyses highlight the discomfort chan-

nel as a key underlying mechanism. A heterogeneity analysis by baseline temperatures shows

that the positive effects of high temperatures on latrine investment are more pronounced in

districts with lower baseline temperatures, but not in those with higher ones. These dif-

ferential effects align with the discomfort channel, which suggests that individuals in colder

climates are less adapted to high temperatures and, therefore, invest in latrines to mitigate

the greater discomfort caused by heat. An alternative specification using temperature de-

viations from historical means—standardized temperature shocks that better capture the

variations in discomfort—also demonstrates positive effects on latrine investment, consistent

with the baseline findings. Moreover, another heterogeneity analysis by baseline crop areas

shows that the positive effects of higher temperatures are less pronounced in districts with

larger crop areas, whereas low temperatures show no differential effects. This pattern sug-

gests that the negative effect of the income channel offsets the positive effect of the discomfort

channel, particularly in the case of high temperatures.

Conversely, I find that extreme temperatures generally do not impact the extent of la-

trine use at the intensive margin following construction, with the exception of very high

temperatures. To examine the effect of temperature on latrine use conditional on owner-

ship, I use a household-level panel dataset from 120 villages across four Indian states, where

open defecation is widely prevalent, over two survey rounds conducted in 2013-2014 and

2018 (Coffey et al., 2014; Gupta et al., 2019). I find that, across most temperature ranges,

temperature does not influence the proportion of household members using latrines at the

intensive margin, whether measured over periods as short as a week or as long as a year.

This is likely due to the high baseline latrine use rate, which averages 79%, as well as the

infrequent occurrence of cold days and the population’s adaptation to high temperatures

in these predominantly hot states. However, I find that extremely hot days (above 35◦C)

increase latrine use in the short run, ranging from one week to one month, suggesting the

discomfort channel also plays a role in driving latrine use at the intensive margin.

Taken together, my analysis highlights that extreme temperatures can encourage adaptive

investment in health technologies by increasing the discomfort of outdoor behaviors, which

ultimately improves human health. Temperature-induced latrine investment can have long-

lasting health benefits, including a reduction in diarrheal mortality rates among children.

A back-of-the-envelope calculation shows that in rural India, an additional cold or hot day

could decrease the diarrheal post-neonatal mortality rate by 0.12-0.90% through increasing

latrine investment. These health benefits are comparable in magnitude to the negative health
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impacts of extreme temperatures found in previous studies like Burgess et al. (2017).

This paper makes three contributions. First, I contribute to the literature on the con-

sequences of climate change by showing the persistent positive effects of weather shocks on

human welfare through a new channel: adaptive investments in health technologies. Most

past studies demonstrate the short-run effects (level effects) of weather shocks on labor

productivity (Adhvaryu et al., 2020; Somanathan et al., 2021; Heyes and Saberian, 2022),

agricultural productivity (Schlenker and Roberts, 2009; Colmer, 2021), and human health

(Deschênes and Greenstone, 2011; Barreca et al., 2016; Burgess et al., 2017; Heutel et al.,

2021; Carleton et al., 2022), which are reversed after these shocks. However, growing lit-

erature shows that weather shocks can have persistent effects (growth effects) on economic

growth through capital depreciation (Dell et al., 2012; Foreman, 2020) and educational at-

tainment, where lower exam performance affects subsequent graduation outcomes (Park,

2020). I complement these studies on growth effects by showing that weather shocks can

persistently improve health through another mechanism: inducing behavioral changes away

from outdoor behaviors that are harmful to human health and towards the adoption of

health-improving durable goods that are used indoors.

Second, I contribute to the literature on technology adoption in developing countries by

showing that weather can be another major determinant in technology adoption. In these

countries, outdoor health behaviors, including open defecation (Cameron et al., 2022), the

collection of unsafe water (Kremer et al., 2011), and the collection and usage of biomass for

cooking (Hanna et al., 2016), are widespread. These outdoor behaviors are closely linked

to water and air pollution, leading to significant health risks for households with limited

coping measures. Past studies have shown that interventions like subsidies and information

campaigns (Yishay et al., 2017; Lipscomb and Schechter, 2018; Cameron et al., 2021; Berk-

ouwer and Dean, 2022) can encourage the adoption of health-improving technologies, thereby

reducing the dependence on these harmful outdoor behaviors. I complement these studies

by showing that weather shocks are another important determinant of health technology

adoption, which can, in turn, discourage outdoor behaviors detrimental to human health.

Lastly, I contribute to the behavioral economics literature on the intertemporal bias

of consumers in the purchase of goods by showing this bias in the context of developing

countries. Past studies have shown that consumers are over-influenced by the weather at the

time of purchase in their choices of goods, including cold weather items and cars, in developed

countries (Conlin et al., 2007; Busse et al., 2015). In the same vein, I demonstrate that the

year-to-year temperature shocks affect the construction of latrines, which are durable goods

used for multiple years. Although rational households would decide whether to construct

latrines by considering the future climate trajectory and calculating the discomfort level
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of open defecation over multiple years, my findings suggest that this decision is excessively

influenced by yearly weather shocks. This result of intertemporal bias in developing countries

is important, as the bias may be larger than in developed countries due to lower education

levels and more limited access to climate and weather forecasts.

The remainder of this paper is organized as follows. Section 2 discusses the relation-

ship between temperature and sanitation behaviors, as well as the study setting in rural

India. Sections 3 and 4 describe my data and empirical strategy, respectively. Section 5 and

Section 6 present the results and underlying mechanisms of the effects of temperatures on

latrine investment, respectively. Section 7 examines the intensive-margin effect on latrine

use. Finally, Section 8 concludes the paper.

2 Temperature and Sanitation Behaviors in India

I present two possible channels through which temperatures can affect sanitation behaviors.

I then examine the applicability of these channels within the context of this paper, which

focuses on a nationwide sanitation policy called the Swachh Bharat Mission in rural India.

2.1 Temperature and Sanitation Behaviors

Extreme temperatures can have two opposing effects on sanitation behaviors: (i) a positive

effect through the discomfort channel and (ii) a negative effect through the income channel.2

First, extreme temperatures can have a positive effect on latrine investment and use by

increasing the discomfort associated with open defecation (discomfort channel). Open defe-

cation requires people to walk outside to a place far from home, and extreme temperatures

can intensify the discomfort of this outdoor behavior. The heightened discomfort under ex-

treme temperatures may discourage people from open defecation, thereby motivating them

to construct and use latrines as a means of adaptation. This discomfort channel is implied

in past epidemiological studies that found that seasonality matters in latrine use (Routray

et al., 2015; Sinha et al., 2017). Their results show that the likelihood of latrine use is higher

during the dry cold season and the rainy season, which suggests that people do not prefer

walking for open defecation when the weather is not comfortable for them.

Conversely, extreme temperatures, particularly extremely high temperatures, can have

a negative effect on latrine investment and use by reducing income (income channel). Ex-

treme heat has been shown to negatively affect income by reducing agricultural productivity

(Burgess et al., 2017; Colmer, 2021). This reduction in income can exacerbate financial

2 Alternative channels related to construction feasibility and government relief are discussed in Section
6.3. This section focuses on the two primary channels examined in this paper.
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constraints, making it more difficult for households to afford latrine construction, thus dis-

couraging this form of health investment. The reduced income can also negatively affect

latrine use by making it harder to cover maintenance costs, including hiring tankers and

laborers to regularly empty pits and septic tanks. These two channels with opposing effects

are formally presented in the conceptual framework in Appendix A.

My empirical analyses in Sections 4 and 5 capture the net effect of the discomfort and

income channels. The sign of this effect indicates which of the two channels is dominant: a

positive (negative) net effect suggests that the discomfort (income) channel is more signifi-

cant. Additionally, I conduct heterogeneity analyses in Section 6 to further investigate the

presence of both channels.

2.2 Study Setting: The Swachh Bharat Mission in India

During the study period of this paper, the Indian government aimed to eliminate open

defecation by subsidizing latrine construction under the nationwide sanitation policy, Swachh

Bharat Mission (SBM), in rural India. In this study context, the discomfort channel is

expected to be more influential than the income channel, which is attenuated by the subsidy.

The SBM provided substantial subsidies for latrine construction to eliminate open defeca-

tion in rural India. Historically, a large number of people in India have practiced open defe-

cation, which has negatively impacted child health by increasing the incidence of diarrheal

diseases and mortality. To address this issue and improve human health, the Indian govern-

ment launched the SBM in 2014, offering subsidies for latrine construction post-verification

in rural areas. The subsidy amount is up to approximately 150 US dollars (12,000 INR) per

household, covering most of the initial costs of basic latrines in rural India. This generous

policy has resulted in the construction of over 100 million household latrines.

This context of the SBM suggests that the negative effect of extreme temperatures via the

income channel is limited. The subsidy provided under the SBM relaxes financial constraints

for latrine construction, thereby diminishing the influence of the income channel.3 Therefore,

I expect that the discomfort channel dominates the income channel, leading to a net positive

effect of extreme temperatures on latrine investment.

Another implication of the SBM context is that my analysis examines whether areas

experiencing more extreme temperatures see a greater increase in the number of latrines.

While the SBM has led to an overall increase in latrine construction across rural India, the

magnitude of this increase may vary according to the different levels of exposure to extreme

temperatures across districts.

3 The SBM subsidy is provided to households after the verification of constructed latrines, so credit
constraints may still be relevant.
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3 Data

To examine the effect of temperature on latrine investment, I use administrative data on the

district-level number of latrines under the SBM, alongside raster data on daily temperature

and rainfall from 2012 to 2019. I also use a household survey dataset on rural sanitation in

four states in northern India to examine the effect of temperature on latrine use.

3.1 Latrine Investment

One outcome variable adopted in this paper is the number of constructed latrines. I use

the administrative data on the district-level number of household latrines under the SBM

from 2012 to 2019 in rural India, which were compiled in Motohashi (2024). Based on this

dataset, I compute the number of latrines per 1,000 households per year by using the baseline

number of households in each district.

One concern about this dataset is that the number of latrines might be systematically

over-reported, leading to measurement errors. This dataset is compiled by the Government

of India under the SBM policy, which aims to achieve 100% latrine coverage by 2019. Thus,

the over-reporting becomes more plausible when the period is closer to the deadline of the

target in 2019. Hossain et al. (2022) validated the same latrine dataset by comparing it

with the statistics in National Family and Health Survey-4 and found that it is reliable at

least until 2016. Therefore, I conduct a robustness check in Section 5.2, where I restrict the

sample periods until 2016, which yields similar results as the baseline specification.

3.2 Latrine Use

Another outcome variable is the status of latrine use. I use the household-level panel data of

latrine use over two survey rounds (2013-2014 and 2018) from the Sanitation Quality, Use,

Access, and Trends (SQUAT) household surveys (Coffey et al., 2014; Gupta et al., 2019).

The SQUAT surveys tract households across two periods in 157 villages across 11 districts

in four states in northern India, including Rajasthan, Madhya Pradesh, Uttar Pradesh, and

Bihar, where open defecation is widely prevalent.

In the SQUAT dataset, I use the status of latrine ownership of each household and latrine

use of each household member in each survey round.4 For the empirical analysis, I construct

the household-level latrine use rate by calculating the proportion of household members using

latrines out of the total number of members.5

4 The SQUAT survey asked about a usual practice of defecation (open defecation or latrine use).
5 The latrine use rate is calculated based on household members who have lived in the house for more

than two months in the past year and are above two years old, who were asked about their latrine use in the
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I also use the village-level GPS coordinates rounded to the nearest 0.25 degree to match

this SQUAT dataset with the weather data.6 My analysis focuses on 120 villages out of 157

villages where GPS information is available.

3.3 Weather

As a treatment variable, I use daily gridded temperature at 1-degree resolution provided by

the India Meteorological Department (IMD) database (Srivastava et al., 2009). I also use

daily gridded rainfall at 0.25-degree resolution as a control variable from the same IMD data

source (Rajeevan et al., 2008). These datasets are constructed by interpolating temperature

measures from 395 stations and rainfall measures from 1,384 stations across India. For my

empirical analysis, I use the average of maximum and minimum temperatures recorded in

the IMD temperature dataset.

To match these weather variables with the district-level dataset on latrine investment,

I compute the district-level means of daily average temperature and rainfall based on the

gridded datasets and 2011 district-level boundary data. Moreover, for the SQUAT dataset

on latrine use, I compute the mean of daily average temperature and rainfall inside the

0.25-degree buffer of each village’s GPS coordinates.

3.4 Data Matching and Sample Construction

For the analysis of the effect of temperature on latrine investment, I construct a balanced

panel dataset on latrine construction and weather variables of 609 districts from 2012 to 2019.

I spatially match the district-level number of latrines and mean daily weather variables based

on the 2011 district boundaries.7

To examine the effect of temperature on latrine use, I construct a balanced panel dataset

on latrine use and weather variables of 1,188 households in 120 villages over two survey

rounds. I spatially match the household-level survey data with village-level daily weather

variables based on the village GPS coordinates. Out of 1,188 households in total, 437

households in 107 villages owned latrines in both survey rounds, which is the sample for

analyzing the effect of temperature on latrine use conditional on latrine ownership.

survey.
6 I obtain only the approximate locations of the surveyed villages at 0.25-degree resolution due to

substantial risks for respondents to be known their sanitation behaviors. Thus, when I match the SQUAT
dataset to weather data, I consider the weather inside the 0.25-degree buffer of each village’s GPS coordinates.

7 I deal with the changes in the district boundary by ensuring that all data are organized according to the
2011 boundary, which follows Motohashi (2024). Latrine data based on the 2019 boundary are aggregated
to follow the 2011 boundary by considering the district splits from 2011 to 2019.
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Table 1 reports the summary statistics of all variables used in the analysis, and Figure 1

shows the distributions of daily average temperature.

4 Empirical Strategy

I exploit presumably random year-to-year variations in temperature at the district level to

examine the effect of temperature on latrine investment.8 I test the persistence of this effect

by estimating the cumulative effect in the distributed-lag model, where I include lagged

temperatures.

Specifically, I adopt the following two-way fixed effects specification:

Latrinedt =
󰁛

l

󰁛

j

βINV
jl BinTempdtjl +

󰁛

l

󰁛

k

δINV
kl DecileRaindtkl + ηd + νst + εdt (1)

where Latrinedt is a number of latrines per 1,000 households in district d in year t. BinTempdtjl

is the number of days in which average temperature is in the jth bin in district d in l years

prior to year t. DecileRaindkdt denotes the number of days in which rainfall is in the kth

decile in district d in l years prior to year t. This rainfall variable is included as a control to

account for the potential confounding effects of rainfall, enabling a clearer focus on the tem-

perature’s impact while accounting for any influence rainfall might have. I include district

fixed effects (ηd) to control for time-invariant unobserved district-level determinants of latrine

construction, as well as state-by-year fixed effects (νst) to control for shocks unique to each

state each year (e.g., changes in state-level sanitation policies and local economic conditions).

Standard errors are clustered at the district level to address the serial correlation.

I define eight temperature bins in BinTempdtjl as follows: <5◦C, 5-10◦C, 10-15◦C, 15-

20◦C, 20-25◦C, 25-30◦C, 30-35◦C, and >35◦C. These binds are used to estimate the nonlinear

latrine-temperature relationship in a flexible way, as well as to ensure precise estimates based

on a sufficient number of observed days in each bin. The 15-20◦C bin, representing moderate

temperatures, serves as a reference bin and is dropped from the regression. Thus, the

coefficient for each temperature bin j (βINV
jl ) captures the effect of an additional cold or hot

day in bin j on the number of latrines per 1,000 households, relative to a day in the 15-20◦C

bin.

This regression specification exploits presumably random year-to-year variation in tem-

perature to estimate the causal effect of temperature on latrine investment. By including

district fixed effects (ηd) and state-by-year fixed effects (νst), the temperature effect is iden-

8 This approach that uses temporal variations in temperature aligns with the methodology adopted in
Deschênes and Greenstone (2011).
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tified from the district-specific deviations in temperature around the district averages after

controlling for shocks common to all districts in a state. Because of unpredictable and

presumably random fluctuation in temperature, the coefficients βINV
jl can have a causal in-

terpretation.

To estimate the persistence of the effect of temperature on latrine investment, I use

a distributed-lag model that includes lagged temperature. Specifically, I include lagged

temperature in l years prior to year t where l is set to be less than or equal to three years

(l ≤ 3) in the baseline specification. Then, I compute the cumulative effect by summing

estimates of the contemporaneous temperature and lagged temperatures. If the cumulative

effect is statistically different from zero, the effect of temperature is found to be persistent.

The baseline specification includes up to three years of lags because it is expected to take

several years to decide on latrine construction, apply for the SBM subsidy, and implement

the latrine construction. However, the results are robust to the change in the maximum

number of lags from 1 year to 10 years, as discussed in Section 5.2.

The coefficients of interest are βINV
jl , which determine which of the two main channels

is dominant. If the cumulative effect derived from the βINV
jl is statistically significantly

positive, this would suggest that the discomfort channel is the primary mechanism at play.

Furthermore, it would indicate that the effect of temperature on latrine investment persists

over multiple years.

5 Results

5.1 Baseline Results

I find that both low and high temperatures increase latrine investment, and this positive

effect persists over multiple years.

In Figure 2 and Table 2, I find the U-shaped cumulative latrine-temperature relationship,

with a steeper slope in the low temperature bins. An additional cold day with an average

temperature below 5◦C or of 5-10◦C leads to an increase in the number of latrines by 26.8 or

20.3 per 1,000 households, relative to a day in the 15-20◦C range, over a three-year period

(Panel A of Figure 2 and column 1 of Table 2). This cumulative effect amounts to a 10%

or 7.6% increase in latrine investment from the pre-SBM period.9 Conversely, I find smaller

positive effects of higher temperatures on latrine investment. For example, an additional hot

day with an average temperature of 25-30◦C or 20-25◦C results in an increase of 3.4 or 5.4

latrines per 1,000 households (a 1.3% or 2.0% increase), respectively.

9 To calculate the effect in percentage, I divide the estimated coefficient by the mean of the dependent
variable in the pre-SBM period (2012-2013). I adopt the same approach for all the following results.
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The larger effects of lower temperatures are consistent with the discomfort channel. Peo-

ple living in rural India are generally less adapted to lower temperatures compared to higher

ones, as the country typically experiences a hot climate on average, with daily average tem-

peratures highly concentrated in the 25-30◦C range (Panel A of Figure 1). Consequently, the

discomfort of walking outside for open defecation is more heightened in lower temperatures,

which may drive a stronger motivation to invest in latrines.

Another factor contributing to the larger effects of lower temperatures could be the

income channel. The negative effect of temperature on agricultural output has been shown

to be concentrated in the case of high temperatures (Burgess et al., 2017; Colmer, 2021).

This negative effect of the income channel on latrine investment can offset the positive

effect of the discomfort channel, thereby making the positive effects of higher temperatures

smaller. The positive effects on latrine investment even become insignificant at very high

temperatures exceeding 30◦C, where the negative income effects are expected to be more

pronounced, as shown in Panel A of Figure 2. A more detailed examination of the income

channel is presented in Section 6.2.

The positive cumulative effect over a three-year period shows that temperature shocks

have a persistent effect on latrine investment over multiple years. Reassuringly, Panel B of

Figure 2 shows that most estimates of contemporaneous and lagged temperature bins, which

are used to calculate the cumulative effect, are consistently positive.10 This persistence of

the effect can be attributed to the fact that constructed latrines, in response to extreme

temperatures, continue to be used over multiple years as durable goods. While the baseline

specification shows a persistent effect over a three-year period, I find that this persistence

extends up to 10 years, especially in lower temperature bins, as detailed in Section 5.2.

5.2 Robustness Checks

The results are robust to multiple checks, including changes in the number of lagged years in

the distributed lag model, a placebo test examining the contemporaneous effect, addressing

potential measurement errors in the outcome, and accounting for baseline latrine coverage

that may affect subsequent latrine construction.

Number of Lagged Years.—While the basic specification includes three years of lagged

temperatures, I conduct robustness checks that estimate the cumulative effect with different

numbers of lagged years ranging from a maximum of 1 year to 10 years.

As shown in Figure 3 and Appendix Table D2, I find that the estimated cumulative

10 All estimates and standard errors for the results shown in Panel B of Figure 2 can be found in Appendix
Table D1.
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effects are consistently positive regardless of the number of lagged years, especially in lower

temperature ranges.

Placebo Test on the Contemporaneous Effect.—Considering the time taken to decide and

implement latrine construction and apply for the SBM subsidy, extreme temperatures in a

specific year are less likely to affect the latrine investment in the same year than in subse-

quent years. Thus, I conduct a placebo test that examines the contemporaneous effect of

temperature on latrine investment. As expected, I do not find statistically significant con-

temporaneous effects, and the magnitudes of the effects are small across most temperature

bins when lagged temperatures are excluded from the regression (Appendix Figure C1).

Measurement Errors in the Outcome.—As discussed in Section 3.1, the number of latrines

reported in the administrative dataset of the SBM is unlikely to be susceptible to measure-

ment errors, at least until 2016. Therefore, I conduct a robustness check by estimating the

baseline specification using observations only prior to 2016.

In Appendix Figure C2, I find that the cumulative effect is still statistically significant

and positive prior to 2016, especially in low temperature bins, although the estimates become

smaller than those of the baseline specification. The smaller estimates can be explained by

the larger negative effect of the income channel prior to 2016. The usage of subsidies under

the SBM had been heavily pushed forward as the deadline for universal latrine coverage by

2019 approached. Thus, prior to 2016, households in rural India were likely to face more

limited access to the subsidy scheme, which resulted in larger financial constraints on latrine

construction. A reduced income due to extreme temperatures could have a larger negative

impact on latrine construction prior to 2016 than after 2016.

Baseline Latrine Coverage Affecting Subsequent Latrine Construction.—During the study

period of this paper under the SBM, latrine coverage in India increased significantly, ap-

proaching closer to universal coverage across rural India, regardless of the pre-SBM baseline

coverage. Consequently, areas with lower baseline coverage were more likely to experience a

larger increase in latrine construction. If the occurrence of extreme temperatures is negatively

correlated with baseline latrine coverage, my baseline results might merely be capturing the

effect of this baseline coverage. To check this potential concern, I conduct a heterogeneous

analysis by comparing the effects of temperature in districts with higher pre-SBM baseline

coverage than the sample median (measured in 2013) to those in districts with lower pre-SBM

baseline coverage.

As shown in Appendix Figure C3, I find positive cumulative effects of extreme temper-

atures in both districts with higher and lower baseline coverage. Finding similar results in
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both cases suggests that my analysis is not merely capturing the effect of baseline latrine

coverage correlated with the occurrence of extreme temperatures.

6 Mechanisms

Heterogeneity and temperature deviation analyses highlight the discomfort channel as a

primary underlying mechanism, rather than the income channel or other alternative expla-

nations.

6.1 Mechanism 1: Discomfort Channel

The net positive effect of extreme temperatures on latrine investment suggests that the

discomfort channel dominates the income channel. To further test the discomfort channel,

I examine heterogeneous effects by the baseline temperature level, as well as conduct an

alternative analysis using temperature deviations from historical means.

Heterogeneity Analysis by Baseline Temperatures.—I conduct a heterogeneity analysis,

comparing effects in districts that have higher baseline temperatures than the sample median

(25.7◦C) during the pre-sample period (2002-2011) with those that have lower baseline tem-

peratures. The discomfort channel suggests that people feel larger discomfort from walking

outside for open defecation when exposed to temperatures they are less adapted to. For

example, people living in districts with a lower baseline temperature could be more sensitive

to high temperature shocks than people living in districts with a higher baseline temper-

ature. Therefore, in these cooler districts, high temperature shocks are expected to cause

a larger increase in latrine investment than low temperature shocks. Conversely, districts

with a higher baseline temperature are expected to experience a larger increase in latrine

investment with low temperature shocks.

As the discomfort channel suggests, I find that the positive effects of higher temperatures

on latrine investment are more pronounced in districts with lower baseline temperatures, but

not in those with higher ones. Specifically, as shown in Figure 4 and column 2 of Table 2, an

additional day of higher temperatures leads to an increase in the number of latrines per 1,000

households by 8.2-9.8 (2.5-2.9% increase), relative to a day in the 15-20◦C range. However,

in districts with higher baseline temperatures, the effect of higher temperatures becomes

insignificant (column 3 of Table 2), which suggests that people in these districts are better

adapted to higher temperatures.

I also find that lower temperatures lead to increased latrine investment, particularly in

districts with lower baseline temperatures (Figure 4 and columns 2 and 3 of Table 2). This
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positive effect can be explained by the fact that, although these districts are classified as

having lower baseline temperatures, they still experience relatively hot climates given the

high cutoff temperature of 25.7◦C. Consequently, cold days in these areas can also heighten

discomfort, prompting a greater investment in latrines. In contrast, in districts with higher

baseline temperatures, the effects become less precise, likely due to the limited occurrence

of days in the lower temperature bins (as illustrated in Panel A of Figure 1) Despite the

imprecise effects, the positive coefficients suggest that the lower temperatures may still have

a positive effect on latrine investment in these areas.

Temperature Deviation Analysis.—One limitation of the heterogeneity analysis by base-

line temperatures is the use of a fixed reference temperature range of 15-20◦C. This approach

may not capture the actual variation in discomfort across different districts, as it assumes

a uniform reference range that may not reflect local climatic conditions. When a district’s

baseline temperature deviates significantly from this fixed range, the actual discomfort ex-

perienced may be inaccurately represented.

To overcome this limitation, I conduct an alternative analysis that adjusts the reference

bin based on each district’s specific baseline temperatures. This analysis involves using

standardized temperature shocks relative to historical means, providing a more consistent

measure of discomfort across districts. Specifically, for each day and district, I calculate how

many standard deviations (SDs) a given temperature observation deviates from the historical

mean, as follows:

TempDevdt =
Tempdt −HistTempd

σd

(2)

where Tempdt is the average temperature in district d in day t, HistTempd is the historical

mean temperature in district d during the pre-study period (from 2002 to 2011), and σd is

the historical standard deviation of temperatures in district d.

I construct the treatment variables by counting the number of days in which the TempDevdt

falls into seven SD bins: < −1.5, [−1.5,−1], [−1,−0.25], [−0.25, 0.25], [0.25, 1], [1, 1.5],

> 1.5.11 The reference bin is set to the [−0.25, 0.25] SD range, which represents days with

temperatures close to the historical average for each district. I then run the regression from

the equation 2, using this number of days in each SD bin as the treatment variable (denoted

as BinTempdtjl).
12

11 The distribution of temperature deviations from the historical mean across the seven SD bins is shown
in Appendix Figure C4.

12 One modification from the baseline specification is the exclusion of observations from 2012 to 2014, as
lagged temperature deviation measures up to three years are unavailable for these years.
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The temperature deviation analysis similarly shows the positive effects of extreme tem-

peratures on latrine investment, particularly for lower temperatures. As shown in Figure

5, an additional day with a lower temperature more than 1 SD below the historical mean

leads to an increase in the number of latrines by 5.9-15, relative to a day in the reference

bin.13 This effect is comparable in magnitude to the results observed for lower temperatures

(5-15◦C) in the baseline specification. Although the effects become less precise for higher

temperatures, I find their positive coefficients, with a U-shaped relationship between tem-

perature and latrine investment. This result indicates that higher temperatures can also

lead to increased latrine investments, though the magnitude of the positive effect may be

reduced due to the income channel, as discussed in the following section.

6.2 Mechanism 2: Income Channel

Another mechanism behind the effects of temperature on latrine investment is the income

channel. To test this channel, I conduct heterogeneity analyses by crop areas and agricultural

seasons. These analyses suggest that, despite the overall positive effects of extreme temper-

atures, the negative effect of the income channel offsets the positive effect of the discomfort

channel, particularly in the case of high temperatures.

As a test of the income channel related to agricultural production, I examine heteroge-

neous effects by crop areas.14 Specifically, I compare the effects of temperature in districts

with larger crop areas than the sample mean to those with smaller crop areas in 2011, one

year prior to the start of the sample period. The income channel, which reflects reduced

income due to lower agricultural production under extreme temperatures, is expected to be

more pronounced in districts with larger crop areas compared to those with smaller crop ar-

eas. Consequently, districts with larger crop areas are likely to experience smaller (or more

negative) effects of temperature on latrine investment, as the negative income channel is ex-

pected to more strongly offset the positive effects of the discomfort channel. Moreover, the

income channel is expected to be more pronounced for high temperatures, as previous stud-

ies have demonstrated that the negative effects of temperature on agricultural production

are concentrated in higher temperature ranges (Deschênes and Greenstone, 2011; Colmer,

2021). Therefore, the overall impact of temperatures on latrine investment is expected to be

smaller for higher temperatures, due to the more substantial negative effects of the income

13 All coefficients and standard errors for the results shown in Figure 5 can be found in Appendix Table
D3.

14 Agricultural data for this analysis is sourced from the ICRISAT (International Crops Research Institute
for the Semi-Arid Tropics) District Level Database. The district-level baseline crop area for 2011, which
includes the total area cultivated with various crops, was calculated. After matching this data with my main
dataset, the sample size was reduced from 609 districts to 524 districts for this heterogeneity analysis.
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channel.

The heterogeneity analysis by crop areas shows that the positive effects of higher tem-

peratures are less pronounced in districts with larger crop areas, whereas low temperatures

show no differential effects. Both Figure 6 and Table 3 show that the cumulative effects

on latrine investment are smaller in districts with larger crop areas in the high temperature

ranges. Notably, the coefficients of the 30-35◦C and above 35◦C bins turn negative in these

districts, while the effects are imprecise. Conversely, districts with smaller crop areas, which

are less susceptible to the income channel, show predominantly positive and statistically

significant effects of higher temperatures. This result suggests that the positive effect of

the discomfort channel outweighs the small negative effect of the income channel in these

areas. Additionally, consistent positive effects of low temperatures are observed across all

districts, aligning with the expectation that the income channel plays a minimal role under

lower temperature conditions.

Given that the income channel is likely influenced by extreme temperatures specifically

during the agricultural growing season, I conduct another heterogeneity analysis by agricul-

tural seasons. Extreme temperatures during the growing season are expected to have a more

pronounced negative impact on latrine investments through the income channel, compared to

the non-growing season. To explore this differential effect, I modify the treatment variables

in equation 2 by counting the number of days in each temperature bin for both the growing

and non-growing seasons.15 I then run a regression that includes treatment variables for

both seasons simultaneously. In this analysis, I restrict the sample to districts with larger

crop areas, as these areas are more susceptible to the income channel. The results from this

analysis provide suggestive evidence that higher temperatures during the growing season lead

to more substantial negative effects compared to the non-growing season (Appendix Figure

C5). However, likely due to the reduced statistical power after segmenting the data by both

crop areas and agricultural seasons, I do not find stark differences in the effects between the

two agricultural seasons.

6.3 Alternative Explanations

I explore alternative explanations, such as construction feasibility and government relief

interventions, but find that neither plays a significant role within the context of this study.

Construction Feasibility.–Extreme temperatures could negatively affect latrine invest-

15 In India, the primary agricultural season (kharif ) runs from June to November, while the secondary
agricultural season (rabi) runs from October to February. Accordingly, I define the growing season as June
through February and the non-growing season as March through May, broadly following the definitions in
Garg et al. (2020).
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ment in the short term by causing delays and increasing construction costs. However, as

discussed in the placebo test in Section 5.2, there is limited evidence to support a significant

short-run contemporaneous effect. Moreover, the baseline results, which demonstrate a net

positive effect, further indicate that construction feasibility, as a negative factor, is not a key

mechanism at play.

Government Relief.—Another possible explanation is government intervention through

relief efforts, where latrines could be constructed in response to extreme weather events like

heat or cold waves. However, the Indian government’s relief guidelines for heat waves do not

include latrine construction as part of their action plan (NDMA, 2019). As a result, this

channel is unlikely to be relevant in the context of India.

7 Intensive-Margin Effect on Latrine Use

Extreme temperatures can affect not only latrine investment but also the extent of latrine

use after construction at the intensive margin. To examine this effect, I use a household-

level panel dataset that captures latrine use over time, exploiting temperature variations at

the village level. I find that extreme temperatures generally do not impact the extent of

latrine use at the intensive margin following construction, with the exception of very high

temperatures.

7.1 Empirical Strategy

I exploit presumably random variation in village-level temperature across two survey rounds

from the SQUAT dataset to examine the effect of temperature on latrine use. Specifically, I

adopt a two-way fixed effects specification, following the same approach as the regression 2.

LatrineUsehvtm =
󰁛

j

βUSE
j BinTempjvtm +

󰁛

k

δUSE
k DecileRainkvtm + ηv + νt + θm + εhvtm

(3)

where h indexes households, j indexes temperature bins, v indexes villages, k indexes rainfall

bins, t indexes the two SQUAT survey rounds in 2013-2014 and 2018, and m indexes the

survey months. LatrineUsehvtm represents the latrine use rate of household h in survey

round t and month m. It is defined as the proportion of household members using latrines

out of the total number of members in that household. BinTempjvtm is the number of days

in which the average temperature is in temperature bin j. I categorize temperature into eight

bins, which is consistent with the specification of latrine investment, though the latrine use
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specification uses village-level variation in temperature. I include village fixed effects (ηv)

to exploit the presumably random variation in village-level temperature across two periods

and to control for time-invariant village-level unobservables that can affect latrine use. I

also include survey-round fixed effects (νt) to control for the trend in latrine use (e.g., an

increase in latrine use because of extensive promotion under the SBM). Survey month fixed

effects (θm) are included to control for seasonality in latrine use, which may be driven by

within-year weather fluctuations. Standard errors are clustered at the village level because

the temperature variation is observed at that level. The coefficients of interest are βUSE
j ,

which capture the effect of an additional day in the temperature bin j on the latrine use

rate, relative to a day in the 15-20◦C bin.

In this analysis, I examine the effect of latrine use, conditional on latrine ownership,

to isolate the impact at the intensive margin, without capturing the influence of latrine

investment decisions. To do so, I restrict the sample to households that owned latrines during

both survey periods. Specifically, the baseline specification focuses on 437 households from

the total sample of 1,188 households.16

The treatment variable, BinTempjvtm, is constructed by counting the number of days

that falls into temperature bin j within a specified reference period leading up to the survey

date for household h. The SQUAT survey rounds were conducted over multiple months,

resulting in variations in survey dates across households.17 For the treatment variable, I

specifically use daily temperature data from X days prior to the survey date up to one day

before. The reference periods (X) considered are 1 week, 2 weeks, 1 month, 6 months, and

12 months.

The analysis of latrine use focuses on the short-run effects rather than persistent effects,

as latrine use behaviors may vary from day to day. The outcome of the regression is the

self-reported typical practice of latrine use. However, given the potential for recall bias, re-

spondents may base their reports on more recent behaviors, influenced by recent temperature

fluctuations. Thus, I use shorter reference periods (1 week, 2 weeks, and 1 month), where

I expect the temperature effects to be more pronounced. As a robustness check, I also use

longer reference periods (6 and 12 months), where I expect the effects to be less significant.

7.2 Results

I find that, across most temperature ranges, temperature does not influence the proportion

of household members using latrines at the intensive margin. However, I find that extremely

16 As a robustness check, I also provide results on latrine use without conditioning on latrine ownership,
using the entire sample.

17 The first-round survey was conducted between November 2013 and December 2014, and the second-
round survey was conducted between August and December 2018 for households included in the final sample.
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hot days increase latrine use in the short run, ranging from one week to one month, suggesting

the discomfort channel also plays a role in driving latrine use at the intensive margin.

In Figure 7, I do not find a significant effect of temperature on latrine use rates conditional

on latrine ownership across most temperature bins, regardless of the reference period used.18

This result, coupled with findings on latrine investment, shows that while extreme temper-

atures cumulatively increase latrine investment, they do not affect the extent of latrine use

at the intensive margin after construction.

Several reasons may explain the limited effect on latrine use. First, the baseline rate of

latrine use, conditional on ownership, is already high: on average, 79% of household members

use latrines if the household owns one in the first survey round (as shown in Table 1). With

such a high baseline, the potential for further increases in use due to extreme temperatures

is limited. Second, this result is specific to the four northern states in India included in

the SQUAT dataset, which are known for their relatively hot climates. As discussed in

Section 6.1, people in these states are expected to be better adapted to higher temperatures,

meaning that hot days may have a limited impact on latrine use except during extreme heat

events. Additionally, the hot climate challenges the estimation of the effects of cold days,

The dataset lacks sufficient observations for lower temperature bins—below 5◦C and between

5-10◦C—across most reference periods, except for the 5-10◦C bin for the 12-month reference

period (as shown in Panel B of Figure 1). Consequently, I could not effectively test the

effects of cold days, which are expected to have a more significant impact in hot climates.

However, I find that extremely hot days increase latrine use in the short run. Figure 7

shows the positive effects of temperatures above 35◦C when adopting reference periods of 1

week, 2 weeks, or 1 month. Specifically, an additional hot day with average temperatures

above 35◦C leads to an increase in latrine use rate by 0.15-0.49 (19-62% from the baseline

use rate), relative to a day in the 15-20◦C range. This result suggests that discomfort from

extreme heat also plays a role in driving increased latrine use at the intensive margin after

construction.19

8 Conclusion

I document that extreme temperatures have a positive, persistent effect on latrine investment.

My analysis suggests that the main underlying mechanism is the discomfort channel, whereby

18 All coefficients and standard errors for the results shown in Figure 7 can be found in Appendix Table
D4. Similar findings are observed when analyzing the full sample of households without conditioning on
latrine ownership, as shown in Appendix Figure C6.

19 Conversely, the income channel is expected to have limited short-term effects for up to one month, as
the costs associated with emptying latrines are only incurred every few years.
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households construct latrines to avoid the greater discomfort of walking outside for open

defecation under extreme temperatures. This adaptive latrine investment can reduce the

open defecation behavior, which ultimately improves human health in terms of reduced

diarrheal diseases and mortality among children.

My results point to the potential benefit of an increased occurrence of extreme weather

under climate change, which has not been shown in most past studies focusing on the negative

consequences of climate change. Moreover, I find a new mechanism for the persistent effects

(rather than short-term effects) of temperature, which is a temperature-induced investment

in health technologies that continues to be used over multiple periods.

A back-of-the-envelope calculation shows substantial health gains that are comparable to

the health damages estimated in previous studies. My results suggest the potential reduction

in diarrheal child mortality due to extreme temperatures, which is driven by increased latrine

investment. Thus, I calculate this positive health effect by multiplying the effect of tempera-

ture on latrine investment, as estimated in this paper, with the effect of latrine construction

on the diarrheal mortality rate in rural India, as reported in Motohashi (2024).20 This back-

of-the-envelope calculation shows that an additional cold or hot day could decrease diarrheal

post-neonatal mortality rate by 0.12-0.90%.21 The magnitude of this positive effect is com-

parable to the negative health impacts of extreme temperatures found in previous studies,

such as Burgess et al. (2017), which reported that an additional hot day increased all-age

mortality in rural India by 0.21-0.47% during the period 1957-2000, before widespread san-

itation investments. This result suggests that the health impact of extreme temperatures is

more nuanced than previously thought, as it may not always be negative when accounting

for adaptive health investments.

My results present several important implications for considering climate change policies

and health behaviors in developing countries. First, adaptation to larger variability in tem-

perature under climate change might have unintended positive consequences. Under extreme

temperatures, people can shift from outdoor behaviors that are harmful to human health

(e.g., open defecation) into health-improving behaviors (e.g., latrine investment) that are

conducted indoors. Conversely, climate change mitigation measures can unintentionally de-

crease the adoption of health-improving technologies used indoors unless these measures are

implemented together with incentives for adopting these technologies. Policymakers should

20 Specifically, I use the estimates from column 1 of Table 2 in this paper, along with the estimated effect
from Motohashi (2024), which shows that an additional latrine per square kilometer reduces the diarrheal
post-neonatal mortality rate by 0.43%. More detailed steps are described in Appendix B.

21 More concretely, I find that an additionally with an average temperature of below 5◦C, 5-10◦C, 10-15◦C,
20-25◦C, and 25-30◦C could decrease the diarrheal post-neonatal mortality rate by 0.90%, 0.68%, 0.15%,
0.18%, and 0.12%, respectively.
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be aware of this risk of unintended negative consequences of climate change mitigation.

Second, my findings on adaptive investments in sanitation technologies, driven by extreme

temperatures, also have implications for a range of outdoor health behaviors in developing

countries. For example, under extreme temperatures, people may shift from the collection

and usage of biomass to the usage of cleaner fuel like liquefied petroleum gas for cooking,

or they may shift from the collection and usage of unsafe spring water to the usage of safe

tap water, for avoiding the outdoor collection. Investigating the potential health benefits of

extreme temperatures in different settings may be a fruitful area for future research.
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Panel A. Latrine Investment Analysis
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Panel B. Latrine Use Analysis
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Figure 1: Daily Temperature Distributions

Notes: This figure shows the distributions of daily average temperatures that are used for the analysis of
latrine investment (Panel A) and the analysis of latrine use (Panel B). Panel A reports distributions for (i)
all districts, (ii) districts with baseline temperatures lower than the sample median, and (iii) districts with
higher baseline temperatures, using daily temperatures at the district level across India from 2012 to 2019.
Panel B reports distributions for different reference periods, using daily temperature at the village level in
the SQUAT sample over two survey rounds in 2013-2014 and 2018.
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Panel A. Cumulative Effect over a Three-Year Peiod
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Figure 2: The Effect of Temperature on Latrine Investment

Notes: This figure plots the estimated effects of temperature on latrine investment. Panel A shows the
cumulative effects, representing the total of contemporaneous and lagged effects, when including up to three
years of lagged temperatures. Panel B shows all estimates of the contemporaneous effect (shown at 0) and
the lagged effects (shown at -1 to -3). The 15-20◦C bin serves as a reference bin and is dropped from
the regression. Markers with whisker lines plot temperature bin estimates and associated 95% confidence
intervals. Standard errors are clustered at the district level.
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Panel A. Low Temperature Bins

.6
10

18
27 29 32

23
29

49

93
99

-2
0

0
20

40
60

80
10

0
N

um
be

r o
f l

at
rin

es
 p

er
 1

,0
00

 h
ou

se
ho

ld
s

0 1 2 3 4 5 6 7 8 9 10
Maximum number of lags (years)

<5°C

.98
7

13
20

26
32 31 30 31

37
46

-2
0

0
20

40
60

80
10

0
N

um
be

r o
f l

at
rin

es
 p

er
 1

,0
00

 h
ou

se
ho

ld
s

0 1 2 3 4 5 6 7 8 9 10
Maximum number of lags (years)

5-10°C

.072 1.5 3 4.5 4.1 5.3 6.4
11

16
21

29

-2
0

0
20

40
60

80
10

0
N

um
be

r o
f l

at
rin

es
 p

er
 1

,0
00

 h
ou

se
ho

ld
s

0 1 2 3 4 5 6 7 8 9 10
Maximum number of lags (years)

10-15°C

Panel B. High Temperature Bins

.83 1.9
4

5.4
4

2.8 2.9 2.1 2.3 3

8

-1
0

-5
0

5
10

15
20

N
um

be
r o

f l
at

rin
es

 p
er

 1
,0

00
 h

ou
se

ho
ld

s

0 1 2 3 4 5 6 7 8 9 10
Maximum number of lags (years)

20-25°C

.4 1.1
2.4 3.4

1.8
.44 .52 -.47 -.6 -.29

4.9

-1
0

-5
0

5
10

15
20

N
um

be
r o

f l
at

rin
es

 p
er

 1
,0

00
 h

ou
se

ho
ld

s

0 1 2 3 4 5 6 7 8 9 10
Maximum number of lags (years)

25-30°C

.15 .31 .48 1
-.84 -1.7 -1.2 -1.7 -1.3 -.86

4.4

-1
0

-5
0

5
10

15
20

N
um

be
r o

f l
at

rin
es

 p
er

 1
,0

00
 h

ou
se

ho
ld

s

0 1 2 3 4 5 6 7 8 9 10
Maximum number of lags (years)

30-35°C

.95 1.9 2.3 3
.4

-2 -1.7
.26 -.5 -1.5

2.5

-1
0

-5
0

5
10

15
20

N
um

be
r o

f l
at

rin
es

 p
er

 1
,0

00
 h

ou
se

ho
ld

s

0 1 2 3 4 5 6 7 8 9 10
Maximum number of lags (years)

>35°C

Figure 3: The Cumulative Effects of Temperature on Latrine Investment with Different
Maximum Numbers of Lags (

󰁓
βINV
jl )

Notes: This figure plots the estimated effect of temperature on latrine investment for different temperature
bins for different maximum numbers of lags (years). This figure shows the cumulative effects, representing
the total of contemporaneous and lagged effects. The 15-20◦C bin serves as a reference bin and is dropped
from the regression. The markers represent temperature bin estimates, while the lines show the associated
95% confidence intervals, which are truncated by the maximum and minimum y-axis values. Standard errors
are clustered at the district level.
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Figure 4: The Heterogeneous Effects of Temperature on Latrine Investment by Baseline
Temperature

Notes: This figure plots the estimated effects of temperature on latrine investment in districts with baseline
temperatures lower than the sample median and in districts with higher baseline temperatures. This figure
shows the cumulative effects, representing the total of contemporaneous and lagged effects, when including
up to three years of lagged temperatures. The 15-20◦C bin serves as a reference bin and is dropped from
the regression. The markers represent temperature bin estimates, while the lines show the associated 95%
confidence intervals, which are truncated by the maximum and minimum y-axis values. Standard errors are
clustered at the district level.
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Figure 5: The Effect of Temperature Deviations from the Historical Mean on Latrine In-
vestment

Notes: This figure plots the estimated effects of temperature deviations from the historical mean on latrine
investment. This figure shows the cumulative effects, representing the total of contemporaneous and lagged
effects, when including up to three years of lagged temperature deviations. The [-0.25,0.25] standard de-
viation bin serves as a reference bin and is dropped from the regression. Markers with whisker lines plot
temperature bin estimates and associated 95% confidence intervals. Standard errors are clustered at the
district level.
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Figure 6: The Heterogeneous Effects of Temperature on Latrine Investment by Baseline
Crop Area

Notes: This figure plots the estimated effects of temperature on latrine investment in districts with baseline
crop areas lower than the sample median and in districts with higher crop areas. This figure shows the
cumulative effects, representing the total of contemporaneous and lagged effects, when including up to three
years of lagged temperatures. The 15-20◦C bin serves as a reference bin and is dropped from the regression.
The coefficients for the below 5◦C bin are omitted from this figure due to their large values, although they are
presented in Table 3. The markers represent temperature bin estimates, while the lines show the associated
95% confidence intervals, which are truncated by the maximum and minimum y-axis values. Standard errors
are clustered at the district level.
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Figure 7: The Effect of Temperature on Latrine Use (Conditional on Ownership)

Notes: This figure plots the estimated effect of temperature on latrine use rates for households owning
latrines in both survey rounds for different reference periods. The 15-20◦C bin serves as a reference bin
and is dropped from the regression. The markers represent temperature bin estimates, while the lines show
the associated 95% confidence intervals, which are truncated by the maximum and minimum y-axis values.
Standard errors are clustered at the village level.
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Table 1: Summary Statistics

Mean SD Min Max Observations

Panel A. District-level Latrine Investment (2012-2019)

Number of latrines (thousand) 162.97 161.47 0 1468.74 4872
Number of latrines per 1,000 households 457.67 282.66 0 3456.62 4872

Panel B. Household-level SQUAT Latrine Data (2013-14, 2018)

Latrine use rate 2013-2014 (0-1) 0.32 0.43 0 1 1188
Latrine use rate 2018 (0-1) 0.6 0.45 0 1 1188
Latrine use rate conditional on ownership 2013-2014 (0-1) 0.79 0.32 0 1 437
Latrine use rate conditional on ownership 2018 (0-1) 0.91 0.22 0 1 437

Panel C. District-level Average Temperature (2012-2019)

Number of days below 5◦C per year 0.5 3.8 0 57 4872
Number of days between 5-10◦C per year 3.68 13.42 0 92 4872
Number of days between 10-15◦C per year 16.37 22.46 0 98 4872
Number of days between 15-20◦C per year 47.36 29.77 0 109 4872
Number of days between 20-25◦C per year 81.73 40.78 0 316 4872
Number of days between 25-30◦C per year 150.65 49 8 364 4872
Number of days between 30-35◦C per year 59.57 41.35 0 192 4872
Number of days above 35◦C per year 5.39 8.42 0 97 4872
Number of days with temperatures >1.5 SD below the mean 34 14.63 0 67 4872
Number of days with temperatures 1-1.5 SD below the mean 40.07 11.63 3 73 4872
Number of days with temperatures 0.25-1 SD below the mean 60.96 17.72 26 149 4872
Number of days with temperatures within 0.25 SD of the mean 56.07 22.85 15 124 4872
Number of days with temperatures 0.25-1 SD above the mean 108.73 32.2 23 170 4872
Number of days with temperatures 1-1.5 SD above the mean 46.1 16.11 9 98 4872
Number of days with temperatures >1.5 SD above the mean 19.31 17.95 0 104 4872

Panel D. District-level Baseline Characteristics

Pre-SBM latrine coverage 2013 0.4 0.25 0 0.99 609
Baseline (historical) mean temperature 2002-2011 25.11 2.29 16.01 29.14 609
Baseline crop area 2011 (thousand Ha) 355.78 305.21 0.41 1845.11 524

Notes: Panel A reports summary statistics of district-level variables on latrine investment. Panel B reports summary
statistics of household-level variables on latrine use in each SQUAT survey round. Panel C reports summary statistics
on the distribution of daily average temperature at the district level. Panel D reports summary statistics of the
baseline district characteristics used in the heterogeneity analyses.
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Table 2: The Cumulative Effect of Temperature on Latrine Investment (Number of Latrines
per 1,000 Households)

All Baseline Temperature

(1) (2) (3)
All Low High

Number of days below 5◦C 26.751∗∗∗ 16.198∗∗ -
(7.742) (6.323) -

Number of days 5-10◦C 20.313∗∗∗ 16.363∗∗∗ 11.295
(4.991) (4.050) (17.506)

Number of days 10-15◦C 4.480∗∗ 4.943∗∗ 3.905
(2.044) (2.125) (3.954)

Number of days 20-25◦C 5.371∗∗∗ 9.417∗∗∗ 1.715
(1.740) (2.113) (3.129)

Number of days 25-30◦C 3.417∗ 9.763∗∗∗ 1.538
(1.990) (2.622) (3.843)

Number of days 30-35◦C 0.998 8.205∗∗∗ -3.357
(2.063) (2.530) (3.743)

Number of days above 35◦C 3.036 3.065 -1.224
(2.724) (5.098) (3.396)

Observations 4,872 2,440 2,432
R2 0.915 0.931 0.902
Number of Districts 609 305 304
Mean of Dep. Variable 267.977 326.829 208.932

Notes: This table reports estimated effects of temperature on la-
trine investment. The 15-20◦C bin serves as a reference bin and
is dropped from the regression. Standard errors, clustered at the
district level, are in parentheses. ***, **, and * indicate signifi-
cance at the 1%, 5%, and 10% levels, respectively. All columns
report the cumulative effects, representing the total of contempo-
raneous and lagged effects, when including up to three years of
lagged temperatures. Column 1 shows the estimated effects in all
districts. Column 2 shows the estimated effects in districts with
baseline temperatures lower than the sample median, while col-
umn 3 shows the estimated effects in districts with higher baseline
temperatures. The means of dependent variables are calculated for
the pre-SBM period (2012-2013).
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Table 3: The Heterogeneous Effects of Temperature on Latrine Investment (Number of
Latrines per 1,000 Households) by Baseline Crop Area

All Baseline Crop Area

(1) (2) (3)
All Low High

Number of days below 5◦C 101.398∗∗∗ 97.733∗∗∗ -
(22.903) (23.603) -

Number of days 5-10◦C 25.113∗∗∗ 16.970∗∗∗ 43.497∗∗∗

(5.344) (5.378) (12.230)

Number of days 10-15◦C 4.906∗∗ 2.708 3.899
(2.015) (2.532) (2.831)

Number of days 20-25◦C 6.030∗∗∗ 7.096∗∗∗ 2.813
(1.801) (2.663) (2.808)

Number of days 25-30◦C 3.660∗ 5.807∗∗ 0.895
(2.035) (2.749) (3.360)

Number of days 30-35◦C 0.878 4.509 -3.984
(2.086) (2.760) (3.480)

Number of days above 35◦C 1.974 0.270 -4.452
(2.789) (5.203) (3.550)

Observations 4,192 2,088 2,096
R2 0.919 0.944 0.897
Number of Districts 524 261 262
Mean of Dep. Variable 265.125 302.815 228.338

Notes: This table reports estimated effects of temperature on la-
trine investment. The 15-20◦C bin serves as a reference bin and is
dropped from the regression. Standard errors, clustered at the dis-
trict level, are in parentheses. ***, **, and * indicate significance
at the 1%, 5%, and 10% levels, respectively. All columns report
the cumulative effects, representing the total of contemporaneous
and lagged effects, when including up to three years of lagged tem-
peratures. Column 1 shows the estimated effects in all districts
with the data of crop area. Column 2 shows the estimated effects
in districts with baseline crop areas lower than the sample median,
while column 3 shows the estimated effects in districts with higher
crop areas. The means of dependent variables are calculated for
the pre-SBM period (2012-2013).
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A Conceptual Framework on Effects of Temperature on Sanita-

tion Behaviors

I present a simple conceptual framework to show that extreme temperatures can have two

opposing effects on sanitation behaviors: (i) a positive effect through a discomfort channel

and (ii) a negative effect through an income channel. A given household decides whether

or not to use latrines. Suppose that the discomfort of walking outside for open defecation,

s, depends on the latrine use rate l ∈ [0, 1], as well as on ambient temperature a ∈ [0, 1].

l can also be thought of as the probability of constructing a latrine in the case of latrine

investment. Conversely, 1 − l is the rate of practicing open defecation. Denote the cost of

constructing a latrine for use as p.22 For a, 1 denotes a physically uninhabitable ambient

temperature (extremely high or low temperature), and 0 denotes the ideal temperature.

Then, the discomfort of walking outside for open defecation can be expressed as s(a, 1−l).

People experience more discomfort under more extreme temperatures: ∂s
∂a

> 0. Moreover,

people experience more discomfort with a higher rate of practicing open defecation (lower

rate of latrine use): ∂s
∂l

< 0.

The household derives utility from consuming composite good x (price normalized to

1) and experiences disutility from the discomfort of walking outside for open defecation

s(a, 1 − l): U(x, s(a, 1 − l)) where Ux > 0, Us < 0. The budget constraint is I(a) = lp + x.

Here, I suppose that income, I(a), is affected by temperature because extreme temperatures

can decrease agricultural productivity. Income decreases under more extreme temperatures:
dI
da

< 0.

The maximization problem of the household’s utility subject to the budget constraint is:

max
l

U(x, s(a, 1− l)) s.t. I(a) = lp+ x (4)

The first order condition with respect to l is

dU

dl
= −Uxp− Us

∂s

∂l
= 0 (5)

p󰁿󰁾󰁽󰂀
MC

= −Us

Ux

∂s

∂l󰁿 󰁾󰁽 󰂀
MB

(6)

which means that the household chooses the latrine use rate to balance the trade-off between

the marginal cost of latrine use and the marginal benefit of latrine use that comes from the

22In the context of latrine use, p represents the maintenance costs associated with emptying pits and
septic tanks, as discussed in Section 2.1.
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reduced discomfort of walking outside for open defecation.

The effects of extreme temperatures on latrine use can be decomposed into two channels

as follows by using the equation (6).

dl

da
=

∂l

∂s

ds

da
+

∂l

∂I

dI

da

=
1

p

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽
−Us

Ux

ds

da󰁿 󰁾󰁽 󰂀
Discomfort channel >0

+
dI

da󰁿󰁾󰁽󰂀
Income channel <0

󰀼
󰁁󰁁󰁀

󰁁󰁁󰀾

(7)

which shows two opposing channels: (i) a positive effect of extreme temperatures on latrine

investment and use because of increased discomfort of walking outside for open defecation

(−Us

Ux

ds
da

> 0) and (ii) a negative effect of extreme temperatures on latrine investment and

use because of reduced income ( dI
da

< 0). The relative magnitudes of discomfort and income

channels decide the sign of the overall effect. My empirical analysis examines which channel

dominates.23

23 This conceptual framework adopts a static model to illustrate the two underlying channels. For
simplicity, the persistence of the effect of extreme temperatures on latrine investment is not examined using
a dynamic model. However, the persistence comes from the fact that latrines are durable goods that continue
to be used over multiple years after construction.
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B Back-of-the-Envelope Calculation on Health Effect

I calculate the health effect of extreme temperatures through increased latrine investment

by multiplying the effect of temperature on latrine investment estimated in this paper with

the effect of latrine construction on diarrheal child mortality rate in rural India, as reported

in Motohashi (2024).

Regarding the effect of temperature on latrine investment, I refer to the statistically

significant estimates presented in column 1 of Table 2. Specifically, these estimates include

a cumulative increase of 26.8, 20.3, 4.5, 5.3, and 3.4 latrines per 1,000 households, caused by

an additional day with temperatures below 5◦C, between 5-10◦C, 10-15◦C, 20-25◦C, and 25-

30◦C, respectively, over a three-year period. By multiplying these estimates by the average

number of households per district (389.87 thousand households) and dividing by the average

area per district (4,975.91 square kilometers), the estimates translate into a cumulative

increase of 2.1, 1.6, 0.35, 0.42, and 0.27 latrines per square kilometer, respectively.

As for the effect of latrine construction on the diarrheal child mortality rate, I refer

to the estimated effect in Motohashi (2024), which is a decrease in diarrheal post-neonatal

mortality rate by 0.011 (0.43% decrease) caused by an additional upstream number of latrines

per square kilometer.

Finally, multiplying both effects yields the health effect of extreme temperatures via

increased latrine investment. An additional day with an average temperature below 5◦C,

between 5-10◦C, 10-15◦C, 20-25◦C, and 25-30◦C results in a decrease in diarrheal post-

neonatal mortality rate by 0.90% (2.1× 0.43%), 0.68% (1.6× 0.43%), 0.15% (0.35× 0.43%),

0.18% (0.42× 0.43%), and 0.12% (0.27× 0.43%), respectively.
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Figure C1: The Contemporaneous Effect of Temperature on Latrine Investment

Notes: This figure plots the estimated contemporaneous effect of temperature on latrine investment, when
lagged temperatures are not included. The 15-20◦C bin serves as a reference bin and is dropped from
the regression. Markers with whisker lines plot temperature bin estimates and associated 95% confidence
intervals. Standard errors are clustered at the district level.
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Figure C2: The Cumulative Effects of Temperature on Latrine Investment (Prior to 2016)

Notes: This figure plots the estimated effects of temperature on latrine investment during the period prior to
2016. This figure shows the cumulative effects, representing the total of contemporaneous and lagged effects,
when including up to three years of lagged temperatures. The 15-20◦C bin serves as a reference bin and is
dropped from the regression. Markers with whisker lines plot temperature bin estimates and associated 95%
confidence intervals. Standard errors are clustered at the district level.
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Figure C3: The Heterogeneous Effects of Temperature on Latrine Investment by Baseline
Latrine Coverage

Notes: This figure plots the estimated effects of temperature on latrine investment in districts with pre-
SBM baseline latrine coverage lower than the sample median and in districts with higher baseline coverage.
This figure shows the cumulative effects, representing the total of contemporaneous and lagged effects, when
including up to three years of lagged temperatures. The 15-20◦C bin serves as a reference bin and is dropped
from the regression. The markers represent temperature bin estimates, while the lines show the associated
95% confidence intervals. Standard errors are clustered at the district level.
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Figure C4: Distribution of Temperature Deviations from the Historical Mean

Notes: This figure shows the distribution of temperature deviations from the historical mean (measured in
standard deviations), using daily temperatures at the district level across India from 2012 to 2019.
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Figure C5: The Heterogeneous Effects of Temperature on Latrine Investment by Agricultural
Seasons

Notes: This figure plots the estimated effects of temperature on latrine investment during both the growing
and non-growing seasons in districts with higher crop areas. This figure shows the cumulative effects,
representing the total of contemporaneous and lagged effects, when including up to three years of lagged
temperatures. The 15-20◦C bin serves as a reference bin and is dropped from the regression. The markers
represent temperature bin estimates, while the lines show the associated 95% confidence intervals, which are
truncated by the maximum and minimum y-axis values. Standard errors are clustered at the district level.
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Figure C6: The Effects of Temperature on Latrine Use (Unconditional on Ownership)

Notes: This figure plots the estimated effect of temperature on latrine use rates for all households, irrespective
of toilet ownership status, for different reference periods. The 15-20◦C bin serves as a reference bin and is
dropped from the regression. The markers represent temperature bin estimates, while the lines show the
associated 95% confidence intervals, which are truncated by the maximum and minimum y-axis values.
Standard errors are clustered at the village level.
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D Additional Tables

Table D1: The Contemporaneous and Lagged Effects of Temperature on Latrine Investment
(Number of Latrines per 1,000 Households)

Low Temperature Bins

(1)

Lag 0: Number of days below 5◦C 2.694
(1.821)

Lag 1: Number of days below 5◦C 10.431∗∗∗

(3.237)

Lag 2: Number of days below 5◦C 8.156∗∗∗

(2.554)

Lag 3: Number of days below 5◦C 5.470∗∗

(2.556)

Lag 0: Number of days 5-10◦C 3.803∗∗∗

(1.049)

Lag 1: Number of days 5-10◦C 6.747∗∗∗

(1.798)

Lag 2: Number of days 5-10◦C 5.053∗∗∗

(1.639)

Lag 3: Number of days 5-10◦C 4.710∗∗∗

(1.209)

Lag 0: Number of days 10-15◦C 0.390
(0.505)

Lag 1: Number of days 10-15◦C 1.742∗∗

(0.689)

Lag 2: Number of days 10-15◦C 1.066
(0.703)

Lag 3: Number of days 10-15◦C 1.282∗∗

(0.536)

Observations 4,872
R2 0.915
Number of Districts 609
Mean of Dep. Variable 267.977

High Temperature Bins

(1)

Lag 0: Number of days 20-25◦C 1.796∗∗∗

(0.484)

Lag 1: Number of days 20-25◦C 1.490∗∗∗

(0.541)

Lag 2: Number of days 20-25◦C 1.583∗∗∗

(0.515)

Lag 3: Number of days 20-25◦C 0.502
(0.489)

Lag 0: Number of days 25-30◦C 1.416∗∗

(0.556)

Lag 1: Number of days 25-30◦C 0.987
(0.629)

Lag 2: Number of days 25-30◦C 0.772
(0.556)

Lag 3: Number of days 25-30◦C 0.242
(0.545)

Lag 0: Number of days 30-35◦C 1.057∗

(0.612)

Lag 1: Number of days 30-35◦C 0.357
(0.630)

Lag 2: Number of days 30-35◦C -0.231
(0.623)

Lag 3: Number of days 30-35◦C -0.184
(0.613)

Lag 0: Number of days above 35◦C 1.285
(1.151)

Lag 1: Number of days above 35◦C 1.095
(0.921)

Lag 2: Number of days above 35◦C 0.315
(0.876)

Lag 3: Number of days above 35◦C 0.342
(1.012)

Observations 4,872
R2 0.915
Number of Districts 609
Mean of Dep. Variable 267.977

Notes: This table reports estimated contemporaneous and lagged effects of temperature on latrine investment, when
up to three years of lagged temperatures are included. The 15-20◦C bin serves as a reference bin and is dropped from
the regression. Standard errors, clustered at the district level, are in parentheses. ***, **, and * indicate significance
at the 1%, 5%, and 10% levels, respectively. The means of dependent variables are calculated for the pre-SBM period
(2012-2013).

11



Table D2: The Cumulative Effects of Temperature on Latrine Investment (Number of La-
trines per 1,000 Households) with Different Number of Lags

Maximum Number of Lags (Years)

(1) (2) (3) (4) (5)
1 Year 3 Years 6 Years 8 Years 10 Years

Number of days below 5C 9.974∗∗∗ 26.751∗∗∗ 22.915 48.679∗∗ 99.116∗∗

(3.782) (7.742) (19.089) (22.427) (42.665)

Number of days 5-10C 6.983∗∗∗ 20.313∗∗∗ 30.853∗∗∗ 31.050∗∗∗ 46.247∗∗∗

(2.145) (4.991) (10.638) (11.831) (14.344)

Number of days 10-15C 1.543 4.480∗∗ 6.433∗ 16.232∗∗∗ 29.489∗∗∗

(1.086) (2.044) (3.658) (5.313) (7.724)

Number of days 20-25C 1.902∗∗ 5.371∗∗∗ 2.902 2.330 7.960
(0.855) (1.740) (3.811) (5.069) (5.120)

Number of days 25-30C 1.054 3.417∗ 0.525 -0.604 4.871
(1.036) (1.990) (4.082) (5.260) (5.168)

Number of days 30-35C 0.311 0.998 -1.155 -1.318 4.397
(1.061) (2.063) (4.345) (5.437) (5.763)

Number of days above 35C 1.860 3.036 -1.743 -0.495 2.504
(1.593) (2.724) (5.283) (7.329) (7.988)

Observations 4,872 4,872 4,872 4,872 4,872
R2 0.912 0.915 0.916 0.917 0.920
Number of Districts 609 609 609 609 609
Mean of Dep. Variable 267.977 267.977 267.977 267.977 267.977

Notes: This table reports the estimated effects of temperature on latrine investment
with a different maximum number of lags (years). The 15-20◦C bin serves as a refer-
ence bin and is dropped from the regression. Standard errors, clustered at the district
level, are in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10%
levels, respectively. All columns report the cumulative effects, representing the total
of contemporaneous and lagged effects, when including up to three years of lagged
temperatures. The means of dependent variables are calculated for the pre-SBM
period (2012-2013).
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Table D3: The Effect of Temperature Deviations from the Historical Mean on Latrine In-
vestment (Number of Latrines per 1,000 Households)

Number of Latrines per 1,000 Households

(1)

Number of days with temperatures 14.795∗∗∗

>1.5 SD below the historical mean (3.772)

Number of days with temperatures 5.885∗∗∗

1-1.5 SD below the historical mean (2.053)

Number of days with temperatures 2.251
0.25-1 SD below the historical mean (1.819)

Number of days with temperatures -1.226
0.25-1 SD above the historical mean (1.927)

Number of days with temperatures 2.297
1-1.5 SD above the historical mean (1.941)

Number of days with temperatures 6.383
>1.5 SD above the historical mean (4.265)

Observations 3,045
R2 0.925
Number of Districts 609

Notes: This table reports the estimated cumulative effects of temperature deviations
from the historical mean on latrine investment, when including up to three years
of lagged temperature deviations. The [-0.25,0.25] standard deviation bin serves as
a reference bin and is dropped from the regression. Standard errors, clustered at
the district level, are in parentheses. ***, **, and * indicate significance at the 1%,
5%, and 10% levels, respectively.
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Table D4: The Effect of Temperature on Latrine Use (Conditional on Ownership)

Latrine Use Rate Conditional on Ownership (0-1)

(1) (2) (3) (4) (5) (6)
1 Week 2 Weeks 1 Month 3 Months 6 Months 12 Months

Number of days below 5◦C - - - - - -
- - - - - -

Number of days 5-10◦C - - - - - 0.003
- - - - - (0.029)

Number of days 10-15◦C -0.008 -0.008 0.002 0.002 0.005 0.003
(0.011) (0.007) (0.005) (0.004) (0.004) (0.004)

Number of days 20-25◦C 0.002 0.001 -0.000 0.000 0.000 -0.002
(0.009) (0.005) (0.003) (0.003) (0.002) (0.003)

Number of days 25-30◦C 0.005 -0.002 0.004 0.002 0.002 -0.001
(0.013) (0.007) (0.004) (0.003) (0.003) (0.005)

Number of days 30-35◦C 0.027 0.024 0.010 -0.004 0.000 -0.002
(0.034) (0.022) (0.023) (0.004) (0.003) (0.006)

Number of days above 35◦C 0.333∗∗∗ 0.488∗∗∗ 0.146∗∗ -0.012 -0.006∗ -0.013
(0.111) (0.167) (0.059) (0.016) (0.003) (0.009)

Observations 874 874 874 874 874 874
R2 0.259 0.261 0.264 0.268 0.264 0.265
Number of Households 437 437 437 437 437 437
Number of Villages 107 107 107 107 107 107
Mean of Dep. Variable 0.786 0.786 0.786 0.786 0.786 0.786

Notes: This table reports the estimated effects of temperature on latrine use rates for different
reference periods. The sample is limited to households that own latrines in both survey rounds.
The 15-20◦C bin serves as a reference bin and is dropped from the regression. Standard errors,
clustered at the village level, are in parentheses. ***, **, and * indicate significance at the 1%,
5%, and 10% levels, respectively. The means of dependent variables are calculated using the first
survey round in 2013-2014.
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