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Text As Treatment and Outcome

• Ash et al. (2021): Text as Treatment (X)

• Gender attitudes measured based on GloVe word embeddings

• Examine the impacts of gender attitudes (X) on interactions

with female judge

• Ash et al. (2022): Text as Outcome (Y)

• Economic style in judicial language measured based on

Word2Vec word embeddings

• Examine the impacts of law-and-economics training on the

economic language in judges’ opinions (Y)
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Word Embeddings

Words are distributed in a vector space based on their

co-occurrence in a corpus.

• Low dimension dense representations of words (↔
one-hot-encoded vectors)

• Positions of word vectors in the space encode relations

between words

• Non-contextualized representations (↔ Transformer)
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Word Embeddings

Source: Ash et al. (2021)
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Models of Word Embeddings

1. Word2Vec (Mikolov et al., 2013)

• Continuous Bag-Of-Words: Predict the center word given the

surrounding context words

• Ski-Gram: Predict the context word based on the center word

2. GloVe (Pennington et al., 2014)

• Learn word embeddings such that the word vectors’ dot

product equals the log of counts in the co-occurrence
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Common Task: Computation of Similarity

1. Document Similarity

• Judges’ opinions v.s. Law and Economics dictionary (Ash et al.,

2022)

• Faculty members’ publications vs University leaders’

publications (Acemoglu et al., 2021)

2. Slant measures based on similarity of word embeddings within

same documents (Ash et al., 2021)
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Steps to Compute Document Similarity

1. Text Vectorization → dimensionality reduction

• TF - IDF (Term Frequency - Inverse Document Frequency)

(Acemoglu et al., 2021)

• LDA (Latent Dirichlet Allocation)

• Word Embeddings (e.g. Word2Vec, GloVe) (Ash et al., 2022)

• Document Embeddings (e.g. Doc2Vec)

• Transformer (e.g. BERT), etc.

2. Compute similarity between generated vectors

• Euclidean distance → Sensitive to the length of text

• Cosine similarity (Acemoglu et al., 2021; Ash et al., 2022)
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Cosine Similarity

sim(!x , !y) = cos(θ) =
!x · !y

‖!x‖‖!y‖ =

!
xiyi"!

x2i

"!
y2i

(1)

Source: Ash et al. (2021)
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Summary of Ash et al. (2021)

1. Research questions

• Do gender attitudes influence interactions with female judges

in U.S. Circuit court?

2. Methodology
• Simple OLS based on two features

• quasi-random assignment of judges to cases

• control for judges’ characteristics (gender, ideology, etc.)

3. Results

• More slanted judges are more likely to vote to reverse

lower-court (district court) decisions authored by female

district judges.

• Assigning judges with a higher gender slant are less likely to

assign opinion authorship to a female judge.

• More slanted judges are also less likely to cite the opinions of

female judges.
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Text As Treatment in Ash et al. (2021)

• Gender attitude (slant) based on the GloVe word

embeddings of judge’s authored opinions

• Cosine similarity between the gender dimension
(
−−→
male −

−−−−−→
female ) and stereotypical dimension

(−−−→career −
−−−→
family)

• High → stereotyped language

• Low → non-stereotyped language
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GloVe

1. Compute global co-occurence matrix

• Reports the number of times two words ave occurred within a

given context window (Xij)

2. Minimize the following objective function to obtain word

embeddings w :

J(w) =
#

i ,j

f (Xij)
$
wT
i wj − log (Xij)

%2
(2)

3. Two key hyperparameters:

• Dimension of word vectors

• Window size for computing co-occurence matrix
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Ref: Co-occurence matrix

Corpus: [I like deep learning. I like NLP. I enjoy flying.]

Window length: 1

Source: Stanford CS224d Lecture 2
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Calculating Vector Differences

1. Select word sets to identify the gender and career-family
dimensions

• Obtain word sets from Linguistic Inquiry and Word Count

Dictionaries for the concepts of male, female, work, and family

• Eliminate words that could be ambiguous or have specific legal

meanings

• Select 10 most frequent words in the full judicial corpus

2. Calculate vector differences based on selected word sets

−−−→
male −

−−−−−→
female =

!
n

−−−−−−−−→
maleword n

|Nmale |
−
!

n

−−−−−−−−−→
femaleword n

|Nfemale |
(3)
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Selected Word Sets in Ash et al. (2021)

Source: Ash et al. (2021)
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Measuring Gender Attitudes

1. Obtain the universe of published 380,000 opinions in thirteen

circuit courts from Bloomberg Law for the years 1890-2003

2. Preprocessing data
• Exclude punctuation, numbers

• Transform all words to be lower cased

• Retain only the most common 50,000 words in all corpus

• Opinions separated into sentences and tokenized into words

3. Train GloVe embeddings on each judge’s corpus
• To address the issue of small corpora and achieve stable results,

use median measures after training the 25 bootstrap samples

• Time-varying measures cannot be constructed due to this

small corpora

4. Validation of Measures
• Human evaluation: law students evaluated empathy toward

women on two randomly paired opinions

• Count-based measures 17
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Summary of Ash et al. (2022)

1. Research questions

• The Effects of the early law-and-economics movement on the

U.S. judiciary

2. Methodology

• Difference in difference specification based on staggered

attendance of judges in the law-and-economics training

3. Results

• After attending economics training, participating judges

• use more economics language in their opinions (NLP part)

• issue more conservative decisions in economics-related cases

• rule against regulatory agencies more often

• favor more lax enforcement in antitrust cases

• impose more/longer criminal sentences
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Text As Outcome in Ash et al. (2022)

• Economics style measured based on the Word2Vec word

embeddings of judge’s authored opinions

• Compute cosine similarity between the judge’s opinions and
law-and-economics phrased used by Ellickson (2000)

• externality, externalities, transaction, transactions, cost, costs,

efficient, efficiency, deterrence, benefit, benefits, capital,

market, markets, marketplace, economic, economics
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Count-based Measures vs Embedding-Based Measures

Rare occurence of law-and-economics phrases in opinions →
Cosine similarity based on word embeddings (right plot) is better

Source: Ash et al. (2022) 21



Words Correlated with Law-and-Economics Lexicon

Panel (a): Cosine similarity close to 1

Panel (b): Cosine similarity close to -1

Source: Ash et al. (2022)
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How to Compute Similarity between Documents in Practice

1. Word Embeddings are computed for all tokens (words) of two

documents.

2. Aggregate these word embeddings to document-level

embeddings by

• taking an element-wise average, minimum or maximum

• fancier technique such as smooth inverse frequency (SIF)

3. Compute the cosine similarity between document-level

embeddings

Ref)

https://aajanki.github.io/fi-sentence-embeddings-eval/models.html
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Alternative measure: Supervised learning approach

1. Obtain corpus metadata on labels for whether it is an

economics-related case (regulation or labor)

2. Use an L2-penalized logistic regression to predict this label on

the text features based on Arora et al. (2017)

3. Apply the training model to the full corpus to obtain the

text-predicted probability that a case is on an economics topic

4. This probability in the non-economics-related cases can be

thought of as a measure of how much economics language

was used

→ Similar empirical results when this probability is used as an

outcome instead of the embedding-based similarity measure
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